
Dan Mahoney/BSDCan 2025 (dmahoney@isc.org)

F-Root on BSD: Alpha to Now
Tales of engineering in production

mailto:dmahoney@isc.org

Requisite Slide: XKCD 705

Quick Housekeeping things

• For questions, if someone else can watch for hands, I would appreciate it.

• If not, just find a place to interrupt.

• My sunglasses are prescription, so if you see me dropping them, it’s just so I
can see you, not to hide my side-eye.

• This talk is mostly about FreeBSD, but if you have questions about routing,
peering, BGP, catch me afterward?

• Started at a Dialup ISP in 1999

• Dedicated server farm for a few years,
mainly systems-focused. Our ticket
system had a “This is a Dan Problem”
button in it.

• Started with ISC in 2008, continued
through several re-orgs.

• Maintaining internal systems

• Care and Feeding of our VMWare
infra

• Mail operations

• And of course, F-root

About Me

About my relationship with BSD
This is not a linux-bashing slide

• There’s a whole “Linux Documentation Project” website (tldp.org). The FreeBSD documentation
project is called FreeBSD.org

• Lack of a cohesive user community in Linux.

• Often found that the answer to Linux questions was “Why do you want to do that, that’s dumb!”
or “well, here’s how you do it on this other distro.”

• Actual man pages, sane interface names, sane startup scripting, sane network config, not stories
about how things like “ifconfig” are deprecated but still installed, and still work (and are not just
aliases for the new tools, or a wrapper that print new-tool usage).

• BSD just let me get what I needed to do, done.

• Two other members of my team seem to have embraced the elegance of the operating system,
both running it now for their own purposes.

http://tldp.org
http://FreeBSD.org

About ISC (and FreeBSD)
• We’re a 501(c)(3) non-profit formerly based in Redwood City, California. (Now,

fully virtual, with corporate folks in NH). A lot of our early people came from
DEC or PAIX.

• We make BIND, and Two DHCP servers, and give it away for free, but charge for
support.

• And we run a root DNS server (on BSD since inception), where the user base is
the entire DNS-using world.

• There’s a long history and it’s not all on our website, but we’ve been known to
the FreeBSD project for a long time, have often hosted mirrors and project infra.

• I’m not the person to tell all the stories, but if you ever meet Paul Vixie, buy him
a beer and ask.

A bookshelf at our old HQ

Brief Aside: 950 Charter Street

The Building did not like to be left alone

Speaking of Which

• Root DNS servers are responsible for
the apex of the DNS.

• When you send a raw query to an
unprimed resolver, it has no idea
where to find mail.google.com, and
your query goes to the root, who says
“I don’t know, but .com is handled by
these guys, their addresses are x.x.x.x
and y:y:::yy”

• It also means we get all the queries for
garbage domains like .local
and .netgear and every misconfigured
server and router, and means we get a
lot of info about who has their network
configured wrong.

What a root DNS server is

What a Root DNS server used to be (long ago, before my time)

• A pair of DEC alphas, in a Rack at 529 Bryant Street (PAIX), running BSD and BIND.

• Two machines so that you could reboot one.

• Anycast came along soon, which allowed each machine to announce its availability
to serve the root DNS zone into local routers using OSPF, which would be
redistributed into BGP. (Vixie/Abley)

• F was the first root DNS server to do anycast.

• Global anycast followed, where F was announced from multiple locations, including
small “local” nodes that were only at an IX, using the NO_EXPORT BGP Community
to keep local servers reachable only by a local audience.

• Way more routing details including subnet size, CDNs, and ECMP that I won’t get
into here.

What an F-Root DNS server looked like (more recent past)

• Two small Cisco/Juniper Routers (7200 or m5/m7i)

• Two Managed Switches (for redundancy)

• Three F-Root Servers (two service nodes [A/B] plus a management box [Z] to
run serial consoles, typically via an off-the-shelf usb-to-8-port-de9-box)

• Most of these were deployed and managed on site by having a sysadmin visit
by one of my predecessors.

• As a fallback, sometimes local hands (in different time zones, who are not
used to FreeBSD), could be stepped through doing a clean OS install.

• (foreshadowing)

What a Root DNS Server looks like now
• As Cisco routers in the field reached end of life, and started approaching memory limitations as

the global routing table grew, the state of software routing daemons like BIRD reached maturity.

• A single machine (very typically a Dell PowerEdge) running FreeBSD, with a connection for its
iDRAC, a “normal” FreeBSD connection, and one or more connections to local exchanges.

• iDRAC has replaced the need for serial consoles, as well as giving us things like crash screen
capture, hardware watchdogs, and the ability to set bios knobs directly. The iDRAC also
exposes SNMP OID’s that show hardware health and RAID health, gives us centralized
firmware updates. Buy me a rootbeer and ask me about iDRACs.

• Software routing daemons on the box have replaced the need for hardware routers.

• A second FIB lets us keep our simple, static management functions distinct from complex
routes learned from BGP peers.

• Automation with Puppet.

Upgrading our systems from the old model to the new one

• Not a drop-in upgrade — what used to be two transit connections speaking BGP needed
to be converted to management and idrac.

• We attempted to purchase Dell Machines locally and ship them out around the world.

• Managing global logistics (and VAT) is a nightmare, and every country is different. (I have
stories)

• Turns out, Dell’s warranty doesn’t apply to boxes that have been moved out of country.

• And most of our boxes are running for free, to benefit an IX and the local community.

• So our answer: “You buy the box in-country, pass us creds, we’ll operate it, the DNS
wins”.

• We also work with a CDN, but not as a handoff of our responsiblity — we firmly believe
we should be able to stand on our own.

Sysadmin Combat Story #1: Upgrades

• The year was 2020. ISC had gone full-virtual just a few months ago.

• Nobody was buying or shipping hardware, staffing was minimal.

• Several older OS versions were going EOL, but we couldn’t get people to the
datacenters to do OS reinstalls.

• Older systems with only a serial console (no boot from sdcard, no PXEboot, no
BIOS console redirection, no serial console command to effect a hard reset).

• Some of them even i386.

• …and a / partition too small to hold a modern kernel (did you know that
freebsd-update won’t check available disk? I do. Ask me how I know.)

Upgrades in the time of lockdown
• Physical hardware, in the field, with an EOL OS, spotty OOB access, and your

remote hands literally isn’t allowed to leave their home, and if they were, there
would be both a language and technology barrier.

• You have a thing that’s up and working, and you are not paying them. You’re
not a priority.

• I tested this in a VM first but…

• Don’t try this at home, kids. 
 

Combat Story #1: MFSBSD Lunacy

Reboot and keep a ping running and pray it comes back…

Combat Story #1: Post-Reboot MFSBSD

Then do one final reboot, and let Puppet bring the box back into the fold!

Upgrades take-aways

• As of now, all but one of our classic nodes has been upgraded to modern
hardware with proper remote management.

• But because the base layout of FreeBSD is so rock-solid and predictable (i.e.
the distro is just two tarballs), it gave us a way to un-paint ourselves from the
corner.

• MFSBSD rocks, but it’s only on mm’s little side page, not really in the
handbook, not sure why?

• This has me thinking about the future of memory-based operating systems.

Sysadmin Story Number 2: Service Management
• Most of what I say here for Puppet could be true for Ansible or Chef as well.

• Puppet deploys a service, and services should be modular.

• While puppet does have the ability to “concatenate” a config file together, or
build it from templates…

• Services managed by puppet should drop their config files into “dot-d”
directories, instead of managing a monolithic file like rc.conf, which extends
to files like /etc/rc.conf.d/ syslog.d/, /etc/logrotate.d/, and /usr/local/etc/rc.d/

• An example service…

Service Management: announced
• We also have a shell script running in a loop with daemon(1) which does a 

dig @localhost . NS

• If the process returns cleanly, the service adds 192.5.5.241 (and the v6 equivalent
2001:500:2f::f) to lo1

• Otherwise, it removes these blocks from lo1

• BIND listens on these new IP addresses

• BIRD notices that these blocks are in the routing table, and adds an aggregate route to its
BGP announcement out to all peers.

• We have “break-glass” files in /var that allow us to suppress these announcements if a system
is misbehaving for some reason, and the global route will take over.

• As mentioned earlier, proper startup script with shutdown knobs so the script cleans up after
itself on a shutdown.

Service Management
• Our services have dependencies, so any service we wrote has a proper rc.d script using the above

knobs, so it respects puppet’s service “enabled” knob, and “running” knob, which knows standard
service commands. 
 
 
 

• Which meant we also needed to learn how to properly write things with rcorder(8)

• The handbook’s documentation on how services work is a 9/10, and rc.subr is very readable (mostly),
the other 1/10 was “just try and and find out”.

• Any given service should be able to report “status” with a proper PID file.

• All our services pass sysutils/rclint as well, which most base rc.d files don’t.

• Puppet also ties into Monitoring. I have stories about Monitoring.

So I’ve gotten good at writing Nagios plugins
• Plugins to interrogate Liebert UPSes that only speak snmpv1 (not even telnet)

• Tools that go through in order and interrogate tw_cli, sa_cli, mfiutil, mptutil, mrsasutil,
megacli, zfs, gmirror, to eventually glean the state of a RAID card, however it was installed “at
the time”.

• Tools to talk to old APC UPSes

• Tools to look at the state of our transfer switch. (They wouldn’t let me actually start attaching
probes to the engine).

• A number of Environmental monitoring devices.

• And tools to talk to a Dell iDRAC, and look at one OID to see if it’s “okay”, and if not, drill
down.

• …did you know that some devices will crash if you monitor them too much? The answer is
caching. (You don’t want to hammer a dying raid card with status requests).

Monitoring with Puppet
• A puppet-deployed service can also deploy things like /usr/local/etc/nrpe.d/ files, so nagios/

nrpe can check services on the local machine, for services that don’t expose a network port, in
addition to the core nrpe.cfg

• Puppet also adds virtual resources, which our nagios system picks up — any box running a
service will have a corresponding health-check added on our nagios systems Adding include
isc_monitor::servicename to a service causes nothing extra to be deployed on the host.

• Puppet can expose “facts” — intrinsic details about a system, and we do things like expose
ilom IP’s as custom facts.

• But on the next puppet run on a monitoring box, files will be deployed in  
/usr/local/etc/nagios/objects/hostname

• Which are a collection of generated templates, concatenated into a single per-host-file

• If it’s a *physical* box, we grab the iLOM/iDRAC IP via ipmitool and build monitoring for that as
well.

Nagios Screenshot

Net Results
• As soon as you deploy any host, you do pkg install puppet8; puppet agent -tv

• You get a base level config with proper sshd settings

• proper users set up and added to .k5login

• puppet adds the system to our kerberos domain

• base level monitoring, plus monitoring for any service deployed via puppet
(without ever having to edit a file).

• And firewalling. Since many of our systems are a solo box out in the world
on a public IP, this is key.

Combat Story 2b: Firewall Startup
• You can set firewall_type in rc.conf, which, if set to a filename, will let you list

the name of a file with rules to run (without the “ipfw” word at the beginning).

• What if that file was a directory of files, that were able to be parsed with
rcorder, so that any service deployed by puppet, could also deploy ipfw rules
for that service?

• I’ve had a PR in for a few years, which we’d love to see mainlined, but for the
moment, we override firewall_script for a copy that runs rcorder over /etc/
ipfw.d/files and runs them in order.

• We really think that with the dot-d’ification of other tools, this is a natural fit for
base (we’d be happy to give up our files that replicate the base examples).

Some ipfw.d examples
• Meta-classes: outbound, routing, services

• Setup and Final rules that add things like core allow lo0 rules and default icmp rules (just like the example
rules in rc.firewall).

• Any firewall rule which depends on a table either creates a named table, or has an rcorder rule which
requires the table be created first

• For example, a file that creates the service (ssh_service, but also PROVIDES the ssh_clients table)

• And then files (ssh_vpn, ssh_monitorhosts, ssh_corporate_shell_server, or even ssh_from_all) that
require and which affect that table.

• There’s a “local” file that is added by puppet, but which gives us a place to put local overrides while testing.

• Since all network-facing services in puppet install an ipfw rule, they all have “ipfw” as a dependency, an
install of a new service will cause a notification to do a service reload of ipfw.

Some ipfw.d screenshots (edited)

Combat Story #3: Dell DRM
• We ask our patrons to get Dell hardware, but because of in-country differences, we often get

a mess of what’s available via which reseller at which time. Sometimes we get Weird Things.

• For example, a Dell-branded 10G network card that would put out LLDP packets that were
invisible from tcpdump. (In our case, it was connected to an Internet Exchange, which are
normally pretty strict about broadcast packets).

• The fix was a firmware update, and we had a deployment method.

• DRM in this case is “Dell Repository Manager”.

• This is a tool to fetch all updates from a Dell server and put them someplace your dell
iDRAC’s can reach them, ala Windows Update.

• If updates are there, the iDRAC will (when commanded) stage them, cleanly shut your system
down, boot into an installer, and then boot back into your OS.

More on DRM
• It’s a Java (command-line and GUI) app that requires sigh Linux, so we have a

necessary Linux control plane for our Dell stuff.

• You can build a repository for a model of machine or bunch of models, then
deploy those to a web accessible directory.

• You can make the idrac check that repo for available updates with either a
click in the iDRAC gui, or can run a check over ssh, which you can later poll
the results of.

While we’re talking about Dell

• There’s also a Dell tool called racadm, which talks to the iDRAC and do things you can’t do
via ssh or redfish

• For example, you need racadm to update the SSL certificate programmatically (we have our
own CA, but CA/Browser forum rules still mean we need to refresh it every two years).

• Racadm *does* run under the FreeBSD Linuxulator, and there’s a PR for a port (originally
contributed by Norse), but the license makes it a bit of a nightmare, I could use guidance
here.

• I’ve also attempted to do some probing into what it would take to run an iDrac “service
module” under FreeBSD, which would let the iDrac log events to the underlying OS.

• The idrac exposes an internal USB ethernet visible to the host OS for IPC — I’d love to
document this some more, bringing us closer to an open-source iSM equivalent.

Future Work (security and reliability)
• At the end of the day, we’re a small team running a critical internet service on commodity hardware, often in

places with limited connectivity back to our control plane (but that’s the point!)

• We’ve leveraged an OS that’s easy to work with to tie our deployment tools into it, but that hardware is still
far away and not in our hands.

• Every system we deploy has unique passwords, so compromising one would not gain an attacker much. We
do monitor for unexpected reboots and chassis intrusions, but some of our sites have really spotty power.

• Would my past fun with MFSBSD make those systems more resilient if they could boot up read-only?

• I’ve considered trying to find a way to do encrypted storage that would depend on a TPM attestation in order
to boot cleanly, but haven’t found anything useful. (There was a TPM talk at BSDCan a few years ago, with
work done by Juniper).

• That said, these are not Netflix-class machines full of copyrighted content — the data these are serving is
public data for the good of the internet.

• The contents of the queries is precious, but there are easier ways to get that than compromising our OS.
(DNS is still a plaintext protocol, at least at the root level).

Future Work (DNS Resiliency)

• The DNS continues to be a service of growing complexity.

• For resiliency reasons, ISC prefers to run root services only on bare-metal, to
prevent supply chain attacks that might be present in container-stacks. (We’ve
made a few minor exceptions for deployments in active combat zones).

• We’ve also experimented with small deployable boxes, but we don’t feel
comfortable authorizing anyone to use the F-Root IP address space on a local
mirror they control (so we’re not about to say “Here, run this RPi image on your
own hardware and you can have your own F”).

• This is critical infrastructure, it shouldn’t be exciting. Stability in the face of
disasters is the story I’m hoping to tell.

Questions?

Notes (added post-talk)

• My medium blog on Dell DRM: https://gushi.medium.com/mass-updating-your-dell-servers-with-drm-
dell-repository-manager-8b46e78614c5 
(apologies for the Medium paywall if you hit it -- I'm working on converting to a non-monetized/paid
account -- note that my medium blog contains non-work items and any opinions there are my own and
do not represent my employer)

• Historic ISC RFC-like document on Anycast (circa 2003): https://www.isc.org/pubs/tn/isc-tn-2003-1.html

• If you’re interested in hosting an F-Root server (if you’re an IXP or ISP): 
https://www.isc.org/froot-process/

• Martin Matuška's MFSBSD Page: https://mfsbsd.vx.sk/ 
(I was told after the talk that these are likely to be supported as official repos)

• My bug report to support ipfw rules in a directory: https://bugs.freebsd.org/bugzilla/show_bug.cgi?
id=266137

https://gushi.medium.com/mass-updating-your-dell-servers-with-drm-dell-repository-manager-8b46e78614c5
https://gushi.medium.com/mass-updating-your-dell-servers-with-drm-dell-repository-manager-8b46e78614c5
https://gushi.medium.com/mass-updating-your-dell-servers-with-drm-dell-repository-manager-8b46e78614c5
https://www.isc.org/pubs/tn/isc-tn-2003-1.html
https://www.isc.org/froot-process/
https://mfsbsd.vx.sk/

